Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.036
Filtrar
1.
Adv Colloid Interface Sci ; 325: 103119, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38447243

RESUMO

Cationic polymers have recently attracted considerable interest as research breakthroughs for various industrial and biomedical applications. They are particularly interesting due to their highly positive charges, acceptable physicochemical properties, and ability to undergo further modifications, making them attractive candidates for biomedical applications. Polyethyleneimines (PEIs), as the most extensively utilized polymers, are one of the valuable and prominent classes of polycations. Owing to their flexible polymeric chains, broad molecular weight (MW) distribution, and repetitive structural units, their customization for functional composites is more feasible. The specific beneficial attributes of PEIs could be introduced by purposeful functionalization or modification, long service life, biocompatibility, and distinct geometry. Therefore, PEIs have significant potential in biotechnology, medicine, and bioscience. In this review, we present the advances in PEI-based nanomaterials, their transfection efficiency, and their toxicity over the past few years. Furthermore, the potential and suitability of PEIs for various applications are highlighted and discussed in detail. This review aims to inspire readers to investigate innovative approaches for the design and development of next-generation PEI-based nanomaterials possessing cutting-edge functionalities and appealing characteristics.


Assuntos
Nanoestruturas , Polietilenoimina , Polietilenoimina/química , Transfecção , Peso Molecular , Polímeros
2.
Int J Biol Macromol ; 265(Pt 2): 130969, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508562

RESUMO

Polyethyleneimine-modified magnetic sugarcane bagasse cellulose film (P-SBC/Fe3O4 film) was simply fabricated for the removal of ibuprofen (IBP), a typical emerging organic contaminant. The P-SBC/Fe3O4 film exhibited an equilibrium adsorption amount of 370.52 mg/g for IBP and a corresponding removal efficiency of 92.63 % under following adsorption conditions: 318 K, pH 4, and 0.25 mg/mL dosage. Thermodynamic studies indicated that adsorption of IBP on the P-SBC/Fe3O4 film was spontaneous (∆G < 0) and endothermic (∆H > 0). The adsorption data conformed to the Freundlich isotherm model and multilayer adsorption model (two layers), and an average of 3-4 active sites on the P-SBC/Fe3O4 film share an IBP molecule. Both the EDR-IDR and AOAS models vividly described the dynamic characteristics of adsorption process. Model fitting results, theoretical calculations, and comprehensive characterization revealed that adsorption is driven by electrostatic interactions between the primary amine of P-SBC/Fe3O4 film and the carboxyl group of IBP molecule, while other weak interactions are also non-ignorable. Furthermore, quantitative calculations based on density functional theory (DFT) underscored the importance of PEI functionalization. In conclusion, P-SBC/Fe3O4 film is an environmentally friendly and cost-effective adsorbent with significant potential for effectively removing IBP, while maintaining its efficacy over multiple cycles.


Assuntos
Polietilenoimina/análogos & derivados , Saccharum , Poluentes Químicos da Água , Adsorção , Celulose/química , Ibuprofeno , Saccharum/química , Polietilenoimina/química , Fenômenos Magnéticos , Cinética , Concentração de Íons de Hidrogênio
3.
Molecules ; 29(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474444

RESUMO

Non-viral vectors have been developing in gene delivery due to their safety and low immunogenicity. But their transfection effect is usually very low, thus limiting the application. Hence, we designed eight peptides (compounds 1-8). We compared their performances; compound 8 had the best transfection efficacy and biocompatibility. The transfection effect was similar with that of PEI, a most-widely-employed commercial transfection reagent. Atomic force microscope (AFM) images showed that the compound could self-assemble and the self-assembled peptide might encapsulate DNA. Based on these results, we further analyzed the inhibitory result in cancer cells and found that compound 8 could partially fight against Hela cells. Therefore, the compound is promising to pave the way for the development of more effective and less toxic transfection vectors.


Assuntos
Neoplasias , Peptídeos , Humanos , Células HeLa , Transfecção , Peptídeos/química , Vetores Genéticos , DNA/química , Polietilenoimina/química
4.
J Nanobiotechnology ; 22(1): 131, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532389

RESUMO

Effective intracellular DNA transfection is imperative for cell-based therapy and gene therapy. Conventional gene transfection methods, including biochemical carriers, physical electroporation and microinjection, face challenges such as cell type dependency, low efficiency, safety concerns, and technical complexity. Nanoneedle arrays have emerged as a promising avenue for improving cellular nucleic acid delivery through direct penetration of the cell membrane, bypassing endocytosis and endosome escape processes. Nanostraws (NS), characterized by their hollow tubular structure, offer the advantage of flexible solution delivery compared to solid nanoneedles. However, NS struggle to stably self-penetrate the cell membrane, resulting in limited delivery efficiency. Coupling with extra physiochemical perforation strategies is a viable approach to improve their performance. This study systematically compared the efficiency of NS coupled with polyethylenimine (PEI) chemical modification, mechanical force, photothermal effect, and electric field on cell membrane perforation and DNA transfection. The results indicate that coupling NS with PEI modification, mechanical force, photothermal effects provide limited enhancement effects. In contrast, NS-electric field coupling significantly improves intracellular DNA transfection efficiency. This work demonstrates that NS serve as a versatile platform capable of integrating various physicochemical strategies, while electric field coupling stands out as a form worthy of primary consideration for efficient DNA transfection.


Assuntos
DNA , Eletroporação , Transfecção , Membrana Celular , Terapia Genética , Polietilenoimina/química
5.
Nanomedicine (Lond) ; 19(10): 895-914, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38530906

RESUMO

Aim: Osteoporosis is a systemic skeletal disorder characterized by reduced osteoblast differentiation, predominantly by overexpression of the Sost gene. A layer-by-layer approach enabled encapsulation of Sost siRNA to enhance the short half-life and poor transfection capacity of siRNA. Materials & methods: Polyethyleneimine and siRNA on chitosan-coated gold nanoparticles (PEI/siRNA/Cs-AuNPs) were engineered using chitosan-reduced gold nanoparticles. They were characterized by dynamic light scattering, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared and gel-mobility assays. Detailed in vitro experiments, gene silencing and western blots were performed. Results: A total of 80% knockdown of the target sclerostin protein was observed by PEI/siRNA/Cs-AuNPs, q-PCR showed threefold downregulation of the Sost gene. Osteogenic markers RunX2 and Alp were significantly upregulated. Conclusion: We report a safe, biocompatible nanotherapeutic strategy to enhance siRNA protection and subsequent silencing to augment bone formation.


Assuntos
Quitosana , Nanopartículas Metálicas , Quitosana/química , Ouro , Nanopartículas Metálicas/química , Osteogênese/efeitos dos fármacos , Polietilenoimina/química , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Camundongos
6.
Int J Biol Macromol ; 265(Pt 1): 130914, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492702

RESUMO

An innovative and simple nanocomposite denoted as MHNTs@PEI was synthesized for gallic acid (GA) analytical sample pretreatment. Polyethyleneimine (PEI) functionalized was binded onto magnetic halloysite nanotubes (MHNTs) to inhence adsorption capacity. MHNTs@PEI was obtained only through two steps modification (amination and PEI modification). Characterizations showed that there are layers of synthetic PEI on the tubular structure of the material and magnetic spheres on its surface, both indicating successful synthesis of the nanocomposite. Furthermore, the adsorption isotherms and kinetic modeling showed that the Langmuir model and pseudo-first-order model fit the adsorption data, respectively. MHNTs@PEI achieved an adsorption capacity of 158 mg·g-1. Overall, the abundant adsorption sites significantly improved the adsorption performance of the MHNTs@PEI. Regeneration tests demonstrated that the MHNTs@PEI exhibits effective adsorption, even after undergoing five consecutive cycles. Optimization of key parameters (ratio, volume of elution, elution time and frequency) in the process of adsorption and desorption was also conducted. The limit of detection (LOD) and that of the quantification (LOQ) were 0.19 and 0.63 µg·mL-1, respectively, and the recoveries were 95.67-99.43 %. Finally, the excellent magnetism (43.5 emu·g-1) and the adsorption feature of MHNTs@PEI enabled its successful utilization in analytical sample pretreatment through the extraction of GA from green tea.


Assuntos
Nanotubos , Poluentes Químicos da Água , Argila , Polietilenoimina/química , Ácido Gálico , Chá , Nanotubos/química , Adsorção , Fenômenos Magnéticos , Cinética
7.
Int J Pharm ; 654: 123959, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38430949

RESUMO

DNA vaccines can be a potential solution to protect global health, triggering both humoral and cellular immune responses. DNA vaccines are valuable in preventing intracellular pathogen infections, and therefore can be explored against coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2). This work explored different systems based on polyethylenimine (PEI), functionalized for the first time with both cholesterol (CHOL) and mannose (MAN) to deliver parental plasmid (PP) and minicircle DNA (mcDNA) vectors encoding the receptor-binding domain (RBD) of SARS-CoV-2 to antigen-presenting cells (APCs). For comparative purposes, three different systems were evaluated: PEI, PEI-CHOL and PEI-CHOL-MAN. The systems were prepared at various nitrogen-to-phosphate group (N/P) ratios and characterized in terms of encapsulation efficiency, surface charge, size, polydispersity index (PDI), morphology, and stability over time. Moreover, in vitro transfection studies of dendritic cells (JAWS II) and human fibroblast cells were performed. Viability studies assured the biocompatibility of all nanocarriers. Confocal microscopy studies confirmed intracellular localization of systems, resulting in enhanced cellular uptake using PEI-CHOL and PEI-CHOL-MAN systems when compared with the PEI system. Regarding the RBD expression, PEI-CHOL-MAN was the system that led to the highest levels of transcripts and protein expression in JAWS II cells. Furthermore, the nanosystems significantly stimulated pro-inflammatory cytokines production and dendritic cell maturation in vitro. Overall, mannosylated systems can be considered a valuable tool in the delivery of plasmid DNA or mcDNA vaccines to APCs.


Assuntos
COVID-19 , Nanopartículas , Vacinas de DNA , Humanos , Polietilenoimina/química , Vacinas contra COVID-19 , COVID-19/prevenção & controle , SARS-CoV-2/genética , Transfecção , DNA , Células Apresentadoras de Antígenos , Colesterol , Nanopartículas/química
8.
J Colloid Interface Sci ; 663: 449-457, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38417296

RESUMO

Self-assembled hyaluronic acid-based nanogels are versatile drug carriers due to their biodegradable nature and gentle preparation conditions, making them particularly interesting for delivery of peptide therapeutics. This study aims to elucidate the relation between peptide structure and encapsulation in a nanogel. Key peptide properties that affect encapsulation in octenyl succinic anhydride-modified hyaluronic acid nanogels were identified as we explored the effect on nanogel characteristics using 12 peptides with varying charge and hydrophobicity. The size and surface properties of the microfluidics-assembled peptide-loaded nanogels were evaluated using dynamic light scattering, laser Doppler electrophoresis, and small angle neutron scattering. Additionally, the change in peptide secondary structure upon encapsulation in nanogels, their release from the nanogels, and the in vitro antimicrobial activity were assessed. In conclusion, the more hydrophobic peptides showed stronger binding to the nanogel carrier and localized internally rather than on the surface of the nanogel, resulting in more spherical nanogels with smoother surfaces and slower release profiles. In contrast, cationic and hydrophilic peptides localized at the nanogel surface resulting in fluffier nanogel structures and quick and more complete release in biorelevant medium. These findings emphasize that the advantages of nanogel delivery systems for different applications depend on the therapeutic peptide properties.


Assuntos
Sistemas de Liberação de Medicamentos , Ácido Hialurônico , Nanogéis/química , Sistemas de Liberação de Medicamentos/métodos , Ácido Hialurônico/química , Polietilenoglicóis/química , Peptídeos , Polietilenoimina/química
9.
J Virol ; 98(3): e0000724, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38305153

RESUMO

Pseudorabies virus (PRV) is the causative agent of Aujeszky's disease, which is responsible for enormous economic losses to the global pig industry. Although vaccination has been used to prevent PRV infection, the effectiveness of vaccines has been greatly diminished with the emergence of PRV variants. Therefore, there is an urgent need to develop anti-PRV drugs. Polyethylenimine (PEI) is a cationic polymer and has a wide range of antibacterial and antiviral activities. This study found that a low dose of 1 µg/mL of the 25-kDa linear PEI had significantly specific anti-PRV activity, which became more intense with increasing concentrations. Mechanistic studies revealed that the viral adsorption stage was the major target of PEI without affecting viral entry, replication stages, and direct inactivation effects. Subsequently, we found that cationic polymers PEI and Polybrene interfered with the interaction between viral proteins and cell surface receptors through electrostatic interaction to exert the antiviral function. In conclusion, cationic polymers such as PEI can be a category of options for defense against PRV. Understanding the anti-PRV mechanism also deepens host-virus interactions and reveals new drug targets for anti-PRV.IMPORTANCEPolyethylenimine (PEI) is a cationic polymer that plays an essential role in the host immune response against microbial infections. However, the specific mechanisms of PEI in interfering with pseudorabies virus (PRV) infection remain unclear. Here, we found that 25-kDa linear PEI exerted mechanisms of antiviral activity and the target of its antiviral activity was mainly in the viral adsorption stage. Correspondingly, the study demonstrated that PEI interfered with the virus adsorption stage by electrostatic adsorption. In addition, we found that cationic polymers are a promising novel agent for controlling PRV, and its antiviral mechanism may provide a strategy for the development of antiviral drugs.


Assuntos
Antivirais , Herpesvirus Suídeo 1 , Polietilenoimina , Eletricidade Estática , Animais , Adsorção/efeitos dos fármacos , Antivirais/química , Antivirais/farmacologia , Herpesvirus Suídeo 1/efeitos dos fármacos , Herpesvirus Suídeo 1/metabolismo , Polietilenoimina/química , Polietilenoimina/farmacologia , Pseudorraiva/tratamento farmacológico , Pseudorraiva/virologia , Suínos/virologia , Doenças dos Suínos/virologia
10.
Luminescence ; 39(2): e4689, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38361140

RESUMO

A new type of polyethyleneimine-protected copper nanoclusters (PEI-CuNCs) is favorably developed by a one-pot method under mild conditions. The obtained PEI-CuNCs is characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, Fourier-transform infrared (FTIR) spectroscopy and other techniques. It is worth noting that the proposed PEI-CuNCs demonstrate a selective response to chromium(VI) over other competitive species. Fluorescence quenching of PEI-CuNCs is determined to be chromium(VI) concentrations dependence with a low limit of detection of 8.9 nM. What is more, the as-developed PEI-CuNCs is further employed in building a detection platform for portable recognition of chromium(VI) in real samples with good accuracy. These findings may offer a distinctive strategy for the development of methods for analyzing and monitoring chromium(VI) and expand their application in real sample monitoring.


Assuntos
Cromo , Nanopartículas Metálicas , Polietilenoimina , Polietilenoimina/química , Cobre/química , Espectrometria de Fluorescência/métodos , Corantes , Corantes Fluorescentes/química , Limite de Detecção , Nanopartículas Metálicas/química
11.
Environ Res ; 247: 118192, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38224939

RESUMO

In this investigation, synthesis of a surface-functionalized chitosan known as amino-rich chitosan (ARCH) was achieved by successful modification of chitosan by polyethyleneimine (PEI). The synthesized ARCH was characterized by a specific surface area of 8.35 m2 g-1 and a microporous structure, with pore sizes predominantly under 25 nm. The Zeta potential of ARCH maintained a strong positive charge across a wide pH range of 3-11. These characteristics contribute to its high adsorption efficiency in aqueous solutions, demonstrated by its application in removing various anionic dyes, including erioglaucine disodium salt (EDS), methyl orange (MO), amaranth (ART), tartrazine (TTZ), and hexavalent chromium ions (Cr(VI)). The adsorption capacities (Qe) for these contaminants were measured at 1301.15 mg g-1 for EDS, 1025.45 mg g-1 for MO, 940.72 mg g-1 for ART, 732.96 mg g-1 for TTZ, and 350.15 mg g-1 for Cr(VI). A significant observation was the rapid attainment of adsorption equilibrium, occurring within 10 min for ARCH. The adsorption behavior was well-described by the Pseudo-second-order and Langmuir models. Thermodynamic studies indicated that the adsorption process is spontaneous and endothermic in nature. Additionally, an increase in temperature was found to enhance the adsorption capacity of ARCH. The material demonstrated robust stability and selective adsorption capabilities in varied conditions, including different organic compounds, pH environments, sodium salt presence, and in the face of interfering ions. After five cycles of adsorption, ARCH maintained about 60% of its initial adsorption capacity. Due to its efficient adsorption performance, simple synthesis process, low biological toxicity, and cost-effectiveness, ARCH is a promising candidate for future water treatment technologies.


Assuntos
Compostos Azo , Quitosana , Poluentes Químicos da Água , Purificação da Água , Quitosana/química , Polietilenoimina/química , Corantes , Ânions , Cromo/análise , Corante Amaranto , Tartrazina , Adsorção , Cinética , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio
12.
J Control Release ; 367: 316-326, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253202

RESUMO

A bioreducible Zn (II)-adenine multifunctional module (BS) and Tet1 peptide were used to modify low-molecular-weight PEI3.5k (polyethyleneimine with molecular weight of 3.5 kDa)into a siRNA vector Zn-PB-T with high transfection efficiency in neurons. A GSH-responsive breakable disulfide spacer was introduced into BS to realize the controlled release of siRNA from the polyplexes in cytoplasm. Zn-PB showed >90% transfection rates in multiple cell lines (3 T3, HK-2, HepG2, 293 T, HeLa, PANC-1),and 1.8-folds higher EGFP knockdown rates than commercial Lipo2k in normal cell line 293 T and cancer cell line HepG2. And Zn-PB-T1 showed 4.7-4.9- and 8.0-8.1-folds higher transfection efficiency comparing to commercial Lipo2k and PEI25k (polyethyleneimine with molecular weight of 25 kDa) in PC12 cells respectively, 2.1-fold EGFP gene silencing efficiency (96.6% EGFP knockdown rates) superior to commercial Lipo2k in neurons. In Parkinson's model, Zn-PB-T1/SNCA-siRNA can effectively protect neurons against MPP+-induced cell death and apoptosis, increasing the cell survival rate to 84.6% and reducing the cell apoptosis rate to 10.8%. This work demonstrated the promising application prospects of the resulting efficient siRNA carriers in siRNA-mediated gene therapy of Parkinson's disease.


Assuntos
Doença de Parkinson , Polieletrólitos , Ratos , Animais , Humanos , RNA Interferente Pequeno/química , Doença de Parkinson/genética , Doença de Parkinson/terapia , Polietilenoimina/química , Zinco , Transfecção , Células HeLa , Peptídeos
13.
Int J Biol Macromol ; 259(Pt 2): 129281, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38216017

RESUMO

A composite film (CMC/PEI) consisting of anionic carboxymethylcellulose (CMC) and cationic polyethyleneimine (PEI) can be easily produced through the solution casting method using self-assembly based on electrostatic interaction and hydrogen bonding. Subsequently, the resulting CMC/PEI polyelectrolyte composite film with a network structure was crosslinked with divalent Cu2+ ions through ionic and coordination bonds, resulting in a strengthened Cu(II)@CMC/PEI film. The composite film was characterized based on its structural, surface, thermal, UV protection, antibacterial, and degradation aspects. The results demonstrated this film has impressive mechanical properties, remarkable solvent resistance, good antibacterial properties, and excellent UV-shielding performance by completely blocking ultraviolet light with wavelengths below 360 nm. These properties can be attributed to the presence of Cu2+ ions and PEI in the film. This work is valuable for the development of novel UV-shielding materials and should contribute to the design of carboxymethylcellulose composite films with desirable properties and exceptional performance.


Assuntos
Cobre , Polietilenoimina , Polietilenoimina/química , Cobre/química , Carboximetilcelulose Sódica/química , Solventes , Raios Ultravioleta , Cátions , Antibacterianos/farmacologia
14.
Nanoscale ; 16(7): 3525-3533, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38273800

RESUMO

A deeper knowledge on the formation and biological fate of polymer based gene vectors is needed for their translation into therapy. Here, polyplexes of polyethyleneimine (PEI) and silencing RNA (siRNA) are formed with theoretical N/P ratios of 2, 4 and 12. Fluorescence correlation spectroscopy (FCS) is used to study the formation of polyplexes from fluorescently labelled PEI and siRNA. FCS proves the presence of free PEI. From the analysis of the autocorrelation functions it was possible to determine the actual stoichiometry of polyplexes. FCS and fluorescence cross correlation spectroscopy (FCCS) are used to follow the fate of the polyplexes intracellularly. Polyplexes disassemble after 1 day inside cells. Positron emission tomography (PET) studies are conducted with radiolabelled polyplexes prepared with siRNA or PEI labelled with 2,3,5,6-tetrafluorophenyl 6-[18F]-fluoronicotinate ([18F]F-PyTFP). PET studies in healthy mice show that [18F]siRNA/PEI and siRNA/[18F]PEI polyplexes show similar biodistribution patterns with limited circulation in the bloodstream and accumulation in the liver. Higher activity for [18F]PEI in the kidney and bladder suggests the presence of free PEI.


Assuntos
Polietilenoimina , RNA de Cadeia Dupla , Animais , Camundongos , Polietilenoimina/química , RNA Interferente Pequeno/química , Distribuição Tecidual , Espectrometria de Fluorescência , Tomografia por Emissão de Pósitrons
15.
Environ Res ; 248: 118263, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38281564

RESUMO

With the increase of sustainable development goal, the bio-based adsorption materials with high and selective dye removal are important for water treatment in the dyeing industry. In this paper, a bio-based adsorption foam composed of metal-organic frameworks (MOF) and polyethyleneimine (PEI)-modified cellulose was prepared by a three-step process, i.e., PEI modification of cellulose fibers (PC), MOF decoration of PEI-modified cellulose (MIL-53@PC), and in-situ foaming with polyurethane. PEI modification provides cellulose fiber with more active sites for both dye adsorption and MOF bonding. We found that MIL-53 crystals were tightly bonded on the surface of PC through hydrogen bonding. Because of the abundant adsorption sites (e.g., amines, iron oxide group), the MIL-53@PC demonstrated high adsorption capacity and selectivity for anionic dye (e.g., 936.5 mg/g for methyl orange) through electrostatic interaction and hydrogen bonding. Finally, MIL-53@PC particles were blended with a waterborne polyurethane prepolymer to prepare a three-dimensional hydrophilic foam (MIL-53@PC/PUF), which not only maintained high adsorption capacity and selectivity of MIL-53@PC and also improved its recyclability and reusability. The MIL-53@PC/PUF offers a promising solution for dye wastewater treatment.


Assuntos
Celulose/análogos & derivados , Estruturas Metalorgânicas , Polietilenoimina/análogos & derivados , Poluentes Químicos da Água , Corantes/química , Adsorção , Polietilenoimina/química , Poliuretanos , Poluentes Químicos da Água/química
16.
Appl Microbiol Biotechnol ; 108(1): 98, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38212965

RESUMO

Transient gene expression (TGE) in mammalian cells is a well-known approach to the fast expression of recombinant proteins. The human cell line HEK (human embryonic kidney) 293F is widely used in this field, due to its adaptability to grow in suspension to high cell densities in serum-free media, amenability to transfection, and production of recombinant proteins in satisfactory quantities for functional and structural analysis. Amounts of plasmid DNA (pDNA) required in transfections for TGE remain high (usually 1 µg pDNA/mL, or even higher), representing a noticeable proportion of the overall cost. Thus, there is an economic need to reduce amounts of coding pDNA in TGE processes. In this work, amounts of both pDNA and transfecting agent used for TGE in HEK 293F cells have been explored in order to reduce them without compromising (or even improving) the productivity of the process in terms of protein yield. In our hands, minimal polyethyleneimine (PEI) cytotoxicity and optimum protein yields were obtained when transfecting at 0.5 µg pDNA/mL (equal to 0.5 µg pDNA/million cells) and a DNA-to-PEI ratio of 1:3, a trend confirmed for several unrelated recombinant proteins. Thus, carefully tuning pDNA and transfecting agent amounts not only reduces the economic costs but also results in higher recombinant protein yields. These results surely have a direct application and interest for the biopharmaceutical industry, always concerned in increasing productivity while decreasing economic costs. KEY POINTS: • Mammalian cells are widely used to produce recombinant proteins in short times. • Tuning DNA and transfecting agent are of great interest to optimize economic costs. • Reducing DNA and transfecting agent amounts result in higher protein yields.


Assuntos
DNA , Polietilenoimina , Animais , Humanos , Análise Custo-Benefício , Plasmídeos , DNA/metabolismo , Transfecção , Polietilenoimina/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
17.
Biochem Genet ; 62(1): 18-39, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37394575

RESUMO

A new era of medical technology in cancer treatment is a directly specific modification of gene expression in tumor cells by nucleic acid delivery. Currently, the main challenge to achieving this goal is to find a non-toxic, safe, and effective strategy for gene transfer to cancer cells. Synthetic composites based on cationic polymers have historically been favored in bioengineering due to their ability to mimic bimolecular structures. Among them, polyethylenimines (PEIs) with superior properties such as a wide range of molecular weight and a flexible structure may propel the development of functional combinations in the biomedical and biomaterial fields. Here, in this review, we will focus on the recent progressions in the formulation optimization of PEI-based polyplex in gene delivery to treat cancer. Also, the effect of PEI's intrinsic characteristics such as structure, molecular weight, and positive charges which influence the gene delivery efficiency will be discussed.


Assuntos
Neoplasias , Polietilenoimina , Polietilenoimina/química , Técnicas de Transferência de Genes , Terapia Genética , Transfecção , Neoplasias/genética , Neoplasias/terapia
18.
J Microbiol Biotechnol ; 34(1): 132-140, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-37957113

RESUMO

In this study, carrageenase immobilization was evaluated with a concise and efficient strategy. Pomelo peel cellulose (PPC) modified by polyethyleneimine (PEI) using the physical absorption method was used as a carrier to immobilize carrageenase and achieved repeated batch catalysis. In addition, various immobilization and reaction parameters were scrutinized to enhance the immobilization efficiency. Under the optimized conditions, the enzyme activity recovery rate was more than 50% and 4.1 times higher than immobilization with non-modified pomelo peels. The optimum temperature and pH of carrageenase after immobilization by PEI-modified pomelo peel, at 60°C and 7.5 respectively, were in line with the free enzyme. The temperature resistance was reduced, inconsistent with free enzyme, and pH resistance was increased. A significant loss of activity (46.8%) was observed after reusing it thrice under optimal reaction conditions. In terms of stability, the immobilized enzyme conserved 76.0% of the initial enzyme activity after 98 days of storage. Furthermore, a modest decrease in the kinetic constant (Km) value was observed, indicating the improved substrate affinity of the immobilized enzyme. Therefore, modified pomelo peel is a verified and promising enzyme immobilization system for the synthesis of inorganic solvents.


Assuntos
Enzimas Imobilizadas , Polietilenoimina , Enzimas Imobilizadas/metabolismo , Estabilidade Enzimática , Polietilenoimina/química , Concentração de Íons de Hidrogênio , Cinética , Temperatura
19.
Int J Pharm ; 649: 123632, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38000648

RESUMO

The efficacy of transfection vectors to cross the endosomal membrane into the cytosol is a central aspect in the development of nucleic acid-based therapeutics. The challenge remains the same: Delivery, Delivery, Delivery. Despite a rational and appropriate construct of triblock polymeric micelles, which could serve as an ideal platform for the co-delivery of siRNAs and hydrophobic anticancer drugs, we show here its inability to properly convey oligonucleotides to their final destination. In order to overcome biological barriers, a linear PEI comprising two orthogonal groups was synthesized, holding an appropriate balance between safety and efficacy. Micellar carriers were then formulated with this polymer to enhance endosomal siRNA release. This chemical technology also addresses the two major challenges to consider when developing novel micellar products for siRNA delivery, namely cytotoxicity of polycations and endosomal escape. Herein, we demonstrate successful release of siRNA using a polymer tailoring strategy combined with a relevant in vitro approach, considering STAT3 as a promising target in the treatment of non-small cell lung cancer (NSCLC).


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , RNA Interferente Pequeno/química , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/terapia , Polietilenoimina/química , Micelas , Neoplasias Pulmonares/genética , Polímeros/química , Linhagem Celular Tumoral
20.
Int J Biol Macromol ; 255: 128354, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37995795

RESUMO

Polyethylenimine (PEI) is a broadly exploited cationic polymer due to its remarkable gene-loading capacity. However, the high cytotoxicity caused by its high surface charge density has been reported in many cell lines, limiting its application significantly. In this study, two different molecular weights of PEI (PEI10k and PEI25k) were crosslinked with red blood cell membranes (RBCm) via disulfide bonds to form PEI derivatives (RMPs) with lower charge density. Furthermore, the targeting molecule folic acid (FA) molecules were further grafted onto the polymers to obtain FA-modified PEI-RBCm copolymers (FA-RMP25k) with tumor cell targeting and glutathione response. In vitro experiments showed that the FA-RMP25k/DNA complex had satisfactory uptake efficiency in both HeLa and 293T cells, and did not cause significant cytotoxicity. Furthermore, the uptake and transfection efficiency of the FA-RMP25k/DNA complex was significantly higher than that of the PEI25k/DNA complex, indicating that FA grafting can increase transfection efficiency by 15 %. These results suggest that FA-RMP25k may be a promising non-viral gene vector with potential applications in gene therapy.


Assuntos
Técnicas de Transferência de Genes , Polietilenoimina , Humanos , Membrana Celular/metabolismo , DNA/química , Terapia Genética/métodos , Glutationa/genética , Células HeLa , Polietilenoimina/química , Polímeros/química , Transfecção , Ácido Fólico/química , Membrana Eritrocítica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...